Introduction to Edge Machine Learning

Machine Learning

Description

Embedded Development & Debugging
12-13 September/Göteborg - Fullbokad!
20-21 November/Kista
2 days
EUR 1.550
SEK 15.500

Request more information

Lena Bernhardsson
+46 (0) 40 59 22 09
lena.bernhardsson@nohau.se

Machine learning is revolutionizing our lives by automating and simplifying work processes and improving several industries to our benefit. For example, in the automotive sector machine learning will have the biggest impact on identification and navigation of roads and obstacles in real-time for autonomous driving. We will see the more heavy use of machine learning running on edge embedded systems also in robots in manufacturing facilities.

This course will boost your know-how towards a concrete use of machine learning by giving an introduction what machine learning is all about and especially its role in embedded edge devices. During the course, we retrain an image recognition model that detects objects. This training course includes hands-on exercises and we will use Google’s Tensorflow on your own laptop, cloud machine and Raspberry Pi with a camera attached.

PREVIOUS KNOWLEDGE

We will use Python on this course. Prior Python experience is not necessary but basic programming concepts understanding is required. You should also have minimal prior experience using Linux/UNIX as a user.

PRACTICAL EXERCISES / TOOLS

Approximately half of the time will be on hands-on exercises. They have been designed to highlight the development process of machine learning.

We use a PC as a host. On the target we run Linux.

You will keep the Raspberry Pi 3+ and camera, to be able to continue exploring machine learning after the training.

CONTENT
INTRODUCTION

  • What is machine learning?
  • Material and tools used during training.

OVERVIEW

  • Basic terminology walk-through
  • Process for training and executing
  • Industry and ecosystem overview

BASIC MACHINE LEARNING

  • Training a model
  • Test and validation in machine learning
  • Basic tuning of a model

DEEP LEARNING

  • What is deep learning
  • Convolutional neural networks
  • Recurrent neural networks
  • Transfer learning

INFERENCE PERFORMANCE ON EDGE DEVICES

  • Reducing accuracy of the model in exchange of performance
  • Performance comparison of different computing hardware

FURTHER LEARNING WHAT TO DO AFTER THIS COURSE

  • Intermediate terminology and concept walk through to aid in further learning in the field

Önskar du mer information?

Behöver du en offert, information eller råd. Kontakta oss!